

An Integrated Systems T&E Approach

OUTLINE

- T&E Overview
- Past T&E Focus
- Current T&E Emphasis
- T&E Complexity Changes
- T&E Engineering Options
- Integrated Systems T&E Approach
- Operational Scenario
- Summary

T&E Overview

- DoD Procurement Funds
- Current Cost of Rotorcraft Testing
 - -Becoming more expensive
 - -May uncover problems late in acquisition cycle
- Mission Rehearsal Training
 - -OFT/WST Expensive
 - -Far removed from battlefield site
- Acquisition & Mishap Investigations
 - -Not integrated with flight testing

Past T&E Focus Cost and Cycle Time

NAWCAD 4.11 BPR POC for T&E

• Jun 99 - Need to reduce T&E costs by 33% & cycle time by 50%

• DR. JACQUES GANSLER - Into the 21st Century - A Strategy for Affordability

• JAN 1999 - ... We must further adapt the best world class business and technical practices to our needs, ... and reduce cycle times and ownership costs while simultaneously improving readiness

• DR PAT SANDERS - ITEA JOURNAL

• JUN/JUL 1998 - The cost of testing can, and should be, reduced through the use of credible simulation

Current T&E Emphasis

Interoperability

- The ability of systems to provide services to and accept services from other systems
- DoD 5000 series requires that all systems must be designed and tested to ensure interoperability

• System-of-Systems (SoS)

 A system working with a group of other systems or sub-systems in a seamless environment

T&E Complexity Changes

- Wright Flyer 1903
- Sikorsky R-4 Helicopter 1942
- Sikorsky SH-60B LAMPS MK3 1983
- Bell Boeing V-22 1989
- Lockheed Martin JSF 2000

T&E Engineering

Focus

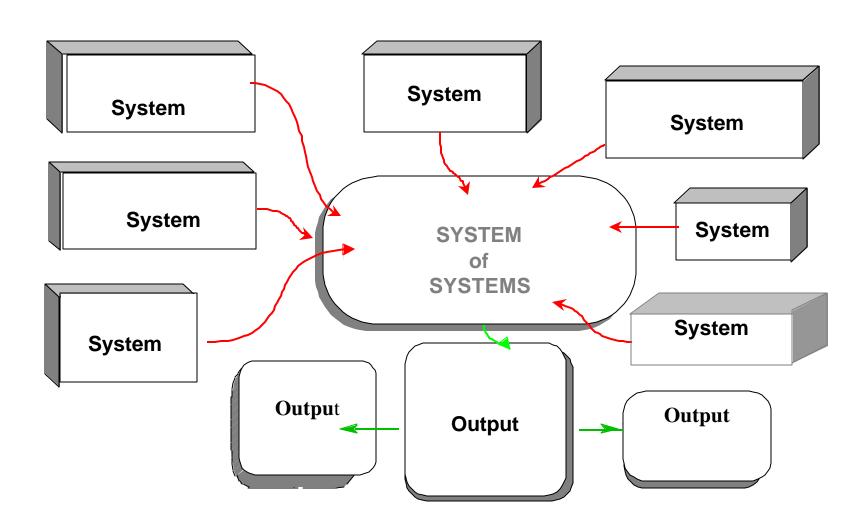
- Avionics; Design; Engines and Power Trains
- Flight Dynamics; Flight Controls
- Performance; Structures and Loads
- Ship Suitability

• Matrix Organization

- Advantage: Technical Specialties
- Disadvantage: "Rice Bowls" Very difficult to get project approved that benefits everyone

T&E Options

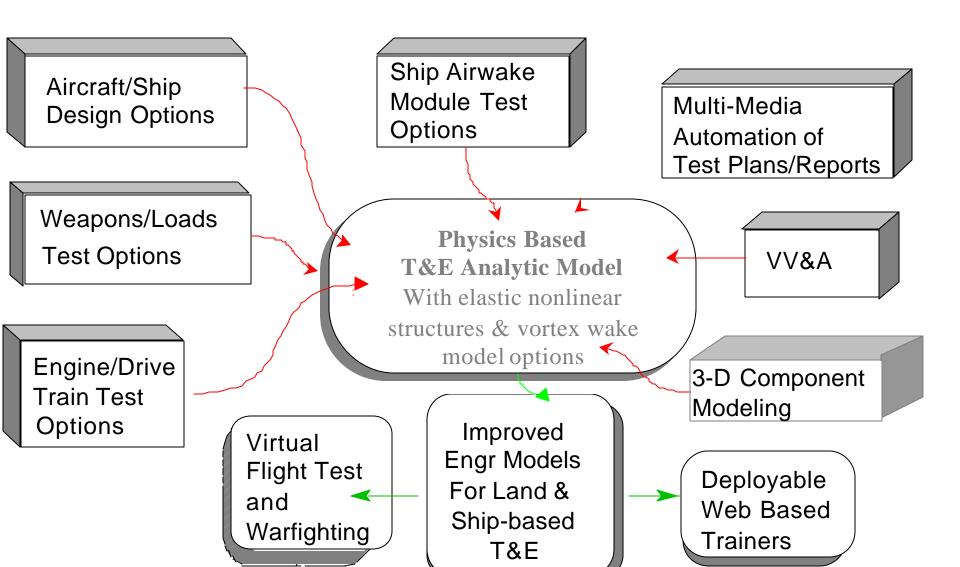
- Business as usual Conventional T&E
 - Introduction of personal computer in the 1980's
 - Introduction of the WWW in the 1990's
 - Cost & Cycle Time Problems
- Combine Conventional T&E and Virtual T&E using related technology options
 - Develop and validate an analytic capability to support and enhance conventional T&E

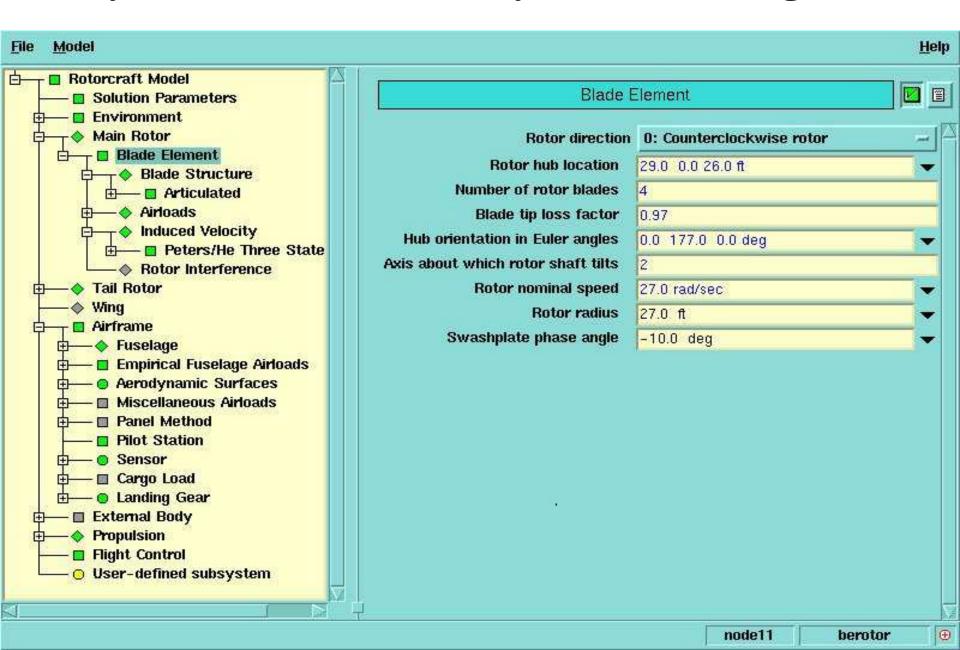


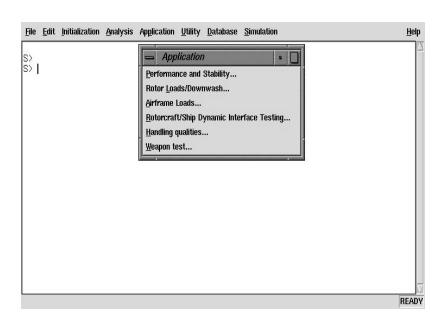
DoD 5000.2-R Requirements

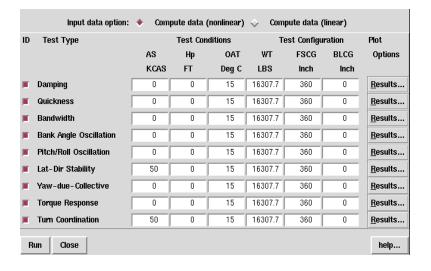
(5 Apr 2002)

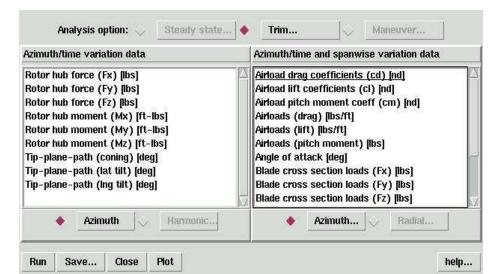
- C1.1 Modeling and Simulation
- The PM shall identify and fund required M&S resources early in the acquisition life cycle, so M&S may be integrated with the T&E program
- The PM shall use test results to revise both the test program and test procedures
- Test results shall also be used to develop and improve models and simulations


System of Systems (SoS) Approach




SoS T&E Approach


Physics-based T&E Analytic Model (Flightlab)



Analytic Flight Test Support Options



ID Test Type	Test Conditions				Test Configuration			FCS	Others	Plot
	AS KCAS	Hp FT	OAT Deg C	Nr RPM	WT LBS	FSCG Inch	BLCG Inch	Status 1/0		ptions
Hover	0	0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Critical Azimuth	20	0.	15	257.8	16269	360	0.	1	Inputs	<u>R</u> esults
Low Speed	0	0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Level Flight	40	0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Climb	60	.0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Autorotation	60	0.	15	257.8	16269	360	0.	1	Inputs	<u>R</u> esults
Coordinated Turn	60	0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
I Lng Stat Stability	60	0.	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Lat/Dir Stat Stab	60	0	15	257.8	16269	360	0	1	Inputs	<u>R</u> esults
Maneuvering Stab	60	0.	15	257.8	16269	360	0.	1	Inputs	<u>R</u> esults
	7			7	-					-
Run Reset Stop.	Limits	Re	cover Resul	ts Clos	e					Help

Robust Design Simulation

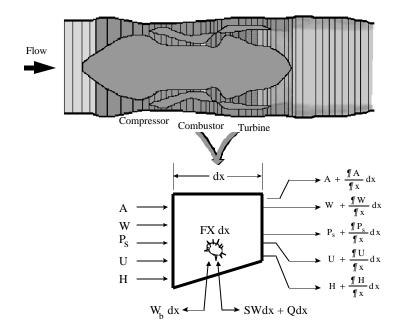
Weapons & Loads Testing

- Weapons
 - Guns
 - Missiles & Rockets
 - Bombs
- Loads
 - Steady
 - Vibratory

AEDC Engine Modeling

The Aerodynamic Turbine Engine Code solves the 1-D Euler Equations with **Turbomachinery Source Terms across** elemental control volumes:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{G}$$

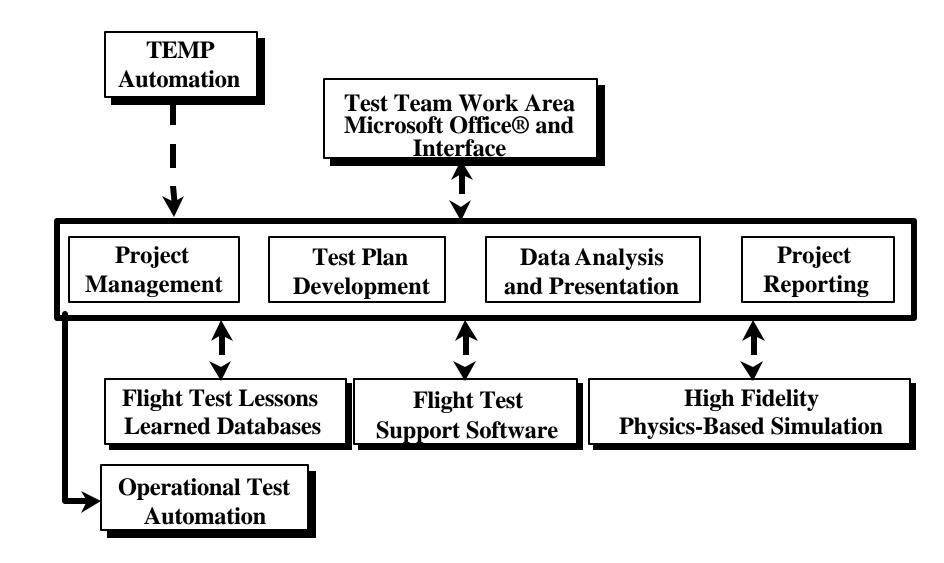

where:

$$\mathbf{U} = \begin{bmatrix} A\mathbf{r} \\ \mathbf{r}Au \\ AE \end{bmatrix}$$

$$\mathbf{F} = \begin{vmatrix} \mathbf{r}Au \\ \mathbf{r}Au^2 + AP \\ u(AE + AP) \end{vmatrix}$$

$$\mathbf{U} = \begin{bmatrix} A\mathbf{r} \\ \mathbf{r}Au \\ AE \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} \mathbf{r}Au \\ \mathbf{r}Au^2 + AP \\ u(AE + AP) \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} -W_{B_x} \\ F_x \\ Q_x + SW_x - H_{Bx} \end{bmatrix}$$

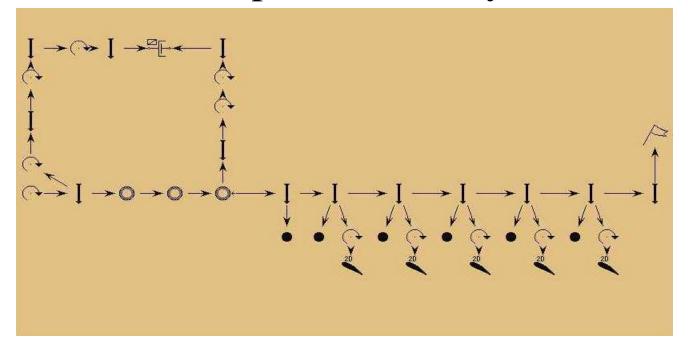
Variable time-stepping routine using both explicit and implicit numerical solvers ensures efficient transient simulation with high fidelity dynamic simulation



Discretization of system into elemental control volumes

Flight Test Automation

VV&A


- Required: Sanity check of model structure
- **Verification** Was model programmed and/or implemented correctly?
- Validation How close does model compare with real world data?
- Accreditation Process of approving model for specific applications
- Built-in V&V options

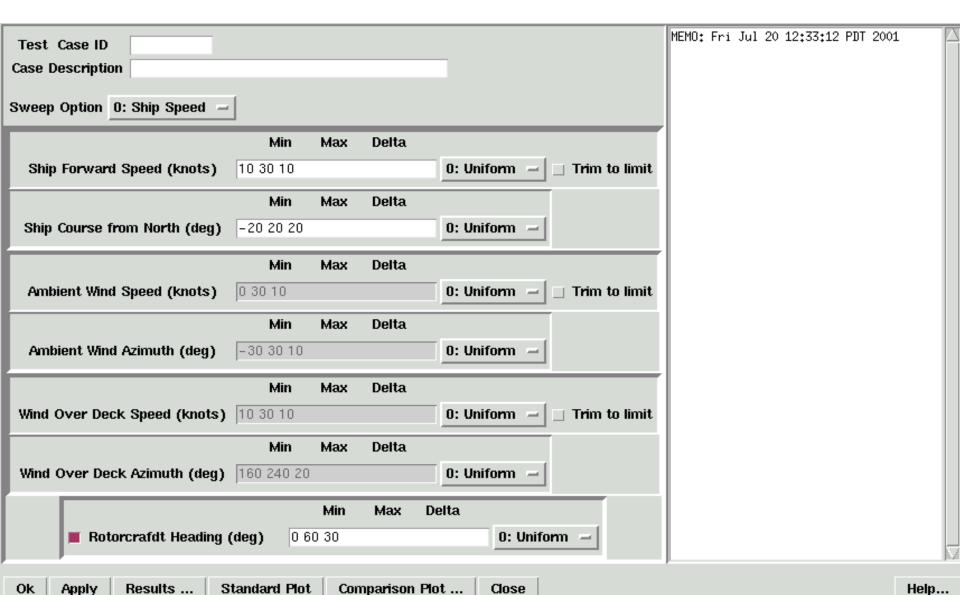
- Flight Test Engineers work in a 3-D world
- Rotorcraft fly in 3-D world
- Model development & analysis in 2-D

Dynamic Interface (DI) Rotorcraft/Ship Operational Challenges

Shipboard Rotorcraft Operation Environment

- High & Turbulent Winds
- Possible Low Visibility Condition
- Moving & Confined Landing Platform
- Unusual Airwake Over the Deck of Ship

GUI for DI Flight Profiles


Flight Profile	Test Conditions/Configurations	
Test: Quasi-Steady Trim —	Atmosphere Model 0: Standard Day —	
	Rotorcraft Position 0: Landing Spot -	
	Ambient Pressure Altitude [ft] 96.1	883
Approach	Outside Ambient Temperature [degC] 15	
	Rotor Rotational Speed [rpm] 257.	831
Descent	Rotorcraft C.G. (Buttline Station) [inch] 0.20	04
Lift off	Rotorcraft C.G. (Fuselage Station) [inch] 354.	096
	Rotorcraft C.G. (x,y,z) in I-frame [ft]	-96.1883
□ Departure	Rotorcraft FCS on/off Status [nd]	
	Rotorcraft Gross Weight [lbf] 1943	34.8
	Rotorcraft Wheel Height above Deck [ft] 26.8	3
	Ship C.G. (x,y,z) in I-Frame [ft] 0 0	-64
	Ship Course from North [deg] 0	
	Ship Forward Speed [knots] 11.8	497
	Ship Landing Spot ID [nd] 1	
	Ship Pitch Attitude [deg] 0	
	Ship Roll Attitude [deg] 0	
	Ship Turbulence Intensity Factor [nd]	
	Wind Azimuth from North [deg] 0	
	Wind Magnitude (horizontal) [knots]	

Run Save... Load... Close Help...

DI Stationkeeping

Summary

- Conventional T&E methodologies applied to early aircraft were not designed to share information
- The complexity of modern aircraft combined with limited budgets dictates interoperability and SoS approaches to T&E
- An integrated systems approach to T&E could be used to not only help reduce the cost and cycle time of testing, but would also support the issues of interoperability and systems of systems testing